

P.B. SIDDHARTHA COLLEGE OF ARTS & SCIENCE

Siddhartha Nagar, Vijayawada – 520 010 Reaccredited at 'A+' level by NAAC Autonomous & ISO 9001:2015 Certified

Title of the Course: REAL ANALYSIS - I Semester : I

Course Code	23MA1T1	Course Delivery Method	Blended Mode
Credits	5	CIA Marks	30
No. of Lecture Hours / Week	5	Semester End Exam Marks	70
Total Number of Lecture Hours	75	Total Marks	100
Year of Introduction : 2020-2021	Year of offering : 2023-2024	Year of Revision: 2023-24	Percentage of Revision :20%

Course Objective: The main objective of this course is to develop problem solving skills and knowledge on the basic concepts of continuity, differentiation, Riemann-Stieltjes integrals, Improper integrals.

Course Outcomes: After successful completion of this course, students will be able to

- CO1: understand the properties of continuous functions. (PO1)
- CO2: understand the properties of differentiable functions. (PO4)
- CO3: test the Riemann- Stieltjes integrability of bounded functions and their properties.(PO3)
- CO4: understand the effect of uniform convergence on the limit function with respect

to continuity, differentiability and integrability.(PO5)

CO5: test the convergence of improper integrals. (PO4)

UNIT-I

Continuity: Limits of functions- continuous functions- Continuity and Compactness-Continuity and Connectedness- Discontinuities. [4.1 to 4.27 of chapter 4 of Text Book1]

UNIT-II

Differentiation:

Derivative of a Real Function- Mean value theorems- The Continuity of Derivatives-L'Hospital's rule- Derivatives of higher order- Taylor's theorem. [5.1 to 5.15 of chapter 5 of Text Book1]

UNIT-III

The Riemann - Stieltjes Integral: Definition and Existence of Integral-Properties of the integral -Integration and Differentiation –Integration of vector-valued functions - Rectifiable Curves. [Chapter-6 of Text Book-1]

UNIT-IV

Sequences and Series of functions: Discussion of main problem - Uniform convergence – Uniform convergence and continuity – Uniform Convergence and Integration – Uniform Convergence and Differentiation – Equicontinuous families of functions – The Stone - Weierstrass Theorem.[7.1 to 7.26 of Text Book 1]

UNIT-V

Improper Integrals: Introduction – Integration of unbounded Functions with Finite limits of

Integration – Comparison Tests for Convergence at a of $\int_{0}^{b} f dx$ - Infinite range of Integration –

Integrand as a Product of Functions. [Chapter-11 of Text Book-2]

PRESCRIBED BOOKS:

- Walter Rudin, "Principles of Mathematical Analysis", Student Edition 1976, McGraw-Hill International Publishers.
- 2. S.C. Malik and Savita Aurora, "**Mathematical Analysis**", Fourth edition, New Age International Publishers.

REFERENCE BOOK:

1.Tom. M. Apostol, "**Mathematical Analysis**" second Edition, Addison Wesley Publishing Company.

Course has Focus on : Foundation

Websites of Interest: 1. www. nptel.ac.in

- 2. <u>www.epgp.inflibnet.ac.in</u>
- 3. www.ocw.mit.edu

P B SIDDHARTHA COLLEGE OF ARTS AND SCIENCE::VIJAYAWADA (An Autonomous college in the jurisdiction of Krishna University) M. Sc. Mathematics First Semester REAL ANALYSIS -23MA1T1

Time: 3 Hours

Max. Marks: 70

SECTION-A

Answer all questions.	(5 X 4=20)			
1 (a) Let $f(x) = (1/x), x \neq 0$ = 0, $x = 0$.				
Examine the continuity of the function f(x) on R. (OR)	(CO1, L2)			
(b) If f is a continuous mapping of a compact metric space X into a metric space prove that f(X) is closed and bounded.	ce Y, then (CO1, L2)			
2 (a) Prove that every differentiable function on (a, b) is continuous on (a, b). (OR)	(CO2, L1)			
(b) State and prove mean value theorem.	(CO2, L1)			
3 (a) Show that $\int_{\overline{a}}^{b} f d\alpha \leq \int_{a}^{\overline{b}} f d\alpha$.	(CO3, L2)			
(OR)				
(b) State and prove fundamental theorem of calculus.	(CO3, L2)			
4 (a) Differentiate Pointwise convergence and Uniform convergence of sequence of				
functions. (OR)	(CO4, L3)			
(b) For every interval [a, -a], prove that there is a sequence of real polynomials P_n such that				
$P_n(0) = 0$ and $\lim_{n \to \infty} P_n(x) = x $ uniformly on [a, -a]	(CO4, L3)			
5 (a) Examine the convergence of $\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$	(CO5, L4)			
(OR)				
(b) Examine the convergence of $\int_{0}^{\infty} \sin x dx$	(CO5, L4)			

SECTION-B

Answer all questions. All questions carry equal marks. (5X10=50)

- 6 (a) Show that a mapping f of a metric space X into a metric space Y is continuous if and only if f⁻¹(V) is open in X, for every open set V in Y. (CO1, L3) (OR)
 - (b) If f is a continuous mapping of a compact metric space X into a metric space Y, and E is a connected subset of X, then prove that f(E) is connected. (CO1, L3)
- 7 (a) Suppose f is continuous on [a, b], $f^{1}(x)$ exists at $x \in [a, b]$, g is defined on an interval I which contains the range of f, and g is continuous at f(x). If h(t) = g(f(t)), then prove that h is differentiable at x and $h^{1}(t) = f^{1}(g(x))g^{1}(x)$. (CO2, L2)

(OR)

(b) State and Prove Taylor's theorem.

8 (a) If f is monotonic on [a, b] and if α is continuous on [a, b] then show that $f \in R(\alpha)$. (CO3, L3)

(OR)

(b) If γ^1 is continuous on [a, b] then show that γ is rectifiable and $\wedge(\gamma) = \int_a^b |\gamma^1(t)| dt$. (CO3, L3)

- 9 (a) If $\{f_n\}$ is sequence of continuous functions on E and if $f_n \rightarrow f$ uniformly on E, then show that f is continuous on E. (CO4, L4)
 - (OR)
 - (b) State and prove Stone Weierstrass theorem.
- 10(a) Test the convergence of the integral $\int_{0}^{1} \frac{dx}{(x-a)^{n}}$ for n<1. (CO5, L4) (OR)
 - (b) Show that if f and g are positive and $f(x) \le g(x)$, for all x in [a, X] and $\int_{-\infty}^{\infty} g(x) dx$

converges, then
$$\int_{a}^{\infty} f(x)dx$$
 converges. (CO5, L4)

(CO2, L2)

(CO4, L4)